
Presented at IMAC 18, Feb 7-10, 2000, San Antonio, Texas.

UNSUPERVISED LEARNING METHODS FOR VIBRATION-BASED DAMAGE
DETECTION

Michael L. Fugate1, Hoon Sohn2, and Charles R. Farrar2

1 Computer Research & Applications Group, CIC-3, M/S B265
2 Engineering Analysis Group, ESA-EA, M/S P946

Los Alamos National Laboratory, Los Alamos, NM 87545

ABSTRACT

The basic premise of vibration-based damage detection is that
damage will significantly alter the stiffness, mass, or energy
dissipation properties of a system, which, in turn, alter the
measured dynamic response of the system.  Although the
basis for vibration-based damage detection appears intuitive,
its actual application poses many significant technical
challenges.  A fundamental challenge is that in many
situations vibration-based damage detection must be
performed in an unsupervised learning mode.  Here, the term
unsupervised learning implies that data from damaged
systems are not available.  These challenges are
supplemented by many practical issues associated with
making accurate and repeatable vibration measurements at a
limited number of locations on complex structures often
operating in adverse environments.  This paper will discuss
two statistical methods for approaching the unsupervised
learning damage detection problem.  The first method is
density estimation and significance testing.  The second
method is statistical process control.  Examples of these
methods are applied to data from an undamaged and
subsequently damaged concrete column.

1. INTRODUCTION

The process of implementing a damage detection strategy is
often referred to as structural health monitoring.  This process
involves the definition of potential damage scenarios for the
system, the observation of the system over a period of time
using periodically spaced measurements, the extraction of
features from these measurements, and the analysis of these
features to determine the current state of health of the system.
The output of this process is periodically updated information
regarding the ability of the system to continue to perform its
desired function in light of the inevitable aging and degradation
resulting from the operational environments.  Many local
damage detection methods have been developed and are
routinely applied to a variety of structures [1].  Doebling, et al.
[2], present a recent thorough review of more global vibration-
based damage identification methods.  While the references
cited in this review propose many different methods for
extracting damage-sensitive features from vibration
measurements, few of the cited references take a statistical

approach to quantifying the observed changes in these
features.

This paper will first pose the general problem of the structural
health monitoring in the context of a problem in statistical
pattern recognition. For most applications of vibration-based
damage detection to large structural systems, data will not be
available from a damaged system.  Therefore, the pattern
recognition must be performed in an unsupervised learning
mode, which is primarily aimed at identifying statistically
significant outliers in a distribution of the damage sensitive
features or changes in the distribution itself. The paper will
describe two statistical procedures often employed for
unsupervised learning problems. These procedures include
density estimation and a statistical analysis procedure referred
to as statistical process control (SPC). Although SPC is a
well-established condition monitoring procedure for rotating
machinery [3], the authors are not aware of applications of this
technology to the vibration-based damage detection problem
for large structural systems.

2. THE STATISTICAL PATTERN RECOGNITION
PARADIGM

In the context of statistical pattern recognition the process of
vibration-based damage detection can be broken down into
four parts: 1. Operational Evaluation, 2. Data Acquisition and
Cleansing, 3. Feature Extraction and Data Compression, and
4. Statistical Model Development

Operational evaluation answers four questions in the
implementation of a structural health monitoring system: 1.
How is damage defined for the system being monitored? 2.
What are the conditions, both operational and environmental,
under which the system to be monitored functions? 3. What
are the limitations on acquiring data in the operational
environment?, and 4. What are the economic and/or life safety
motives for performing the monitoring?  Operational evaluation
begins to define why the monitoring is to be done, what will be
monitored, when to monitor, where to monitor, how to perform
the monitoring as well as tailoring the monitoring to unique
aspects of the system and unique features of the damage that
is to be detected.



The data acquisition portion of the structural health monitoring
process involves selecting the types of sensors to be used,
the locations where the sensors should be placed, the number
of sensors to be used, and the data
acquisition/storage/transmittal hardware. Other considerations
that must be addressed include how often the data should be
collected, how to normalize the data, and how to quantify the
variability in the measurement process.  Data cleansing is the
process of selectively choosing data to accept for, or reject
from, the feature selection process. Filtering and data
decimation are two of the most common methods for data
cleansing.

The area of the structural damage detection process that
receives the most attention in the technical literature is feature
extraction. Feature extraction is the process of the identifying
damage-sensitive properties derived from the measured
vibration response that allows one to distinguish between the
undamaged and damaged structure.  Many different damage-
sensitive features have been proposed including relatively
simple ones such as the root-mean squared (RMS) and
kurtosis of the response amplitudes [4], basic linear modal
properties such as resonant frequencies and mode shape,
and quantities derived from them such a dynamic flexibility
matrices,  [5].  For systems exhibiting nonlinear response,
features such as an Aries Intensity Factor [6] features based
on time-frequency analysis [7] and features derived from time
series analysis [8] have shown promise for damage detection.

The diagnostic measurement needed to perform structural
health monitoring typically produces a large amount of data.
Data compression into feature vectors of small dimension is
often necessary if accurate estimates of the feature statistical
distribution are to be obtained.  The need for low
dimensionality in the feature vectors is referred to as the
"curse of dimensionality" and is discussed in detail in general
texts on statistical pattern recognition [9].

The portion of the structural health monitoring process that
has received the least attention in the technical literature is the
development of statistical models to enhance the damage
detection process.  Statistical model development is
concerned with the implementation of the algorithms that
analyze the distribution of extracted features in an effort to
determine the damage state of the structure. The algorithms
used in statistical model development usually fall into the three
general categories: 1. Group Classification, 2. Regression
Analysis, and 3. Outlier Detection.  The appropriate algorithm
to use will depend on the ability to perform supervised or
unsupervised learning.  Here, supervised learning refers to the
case were examples of data from damaged and undamaged
structures are available.  Unsupervised learning refers to the
case were data is only available from the undamaged
structure.  The focus of this paper will be on unsupervised
methods.

The statistical models are typically used to answer a series of
questions regarding the presence, location, and type of
damage. The statistical models are also used to minimize
errors, which may be of two types: 1. False-positive damage
indication (indication of damage when none is present), and 2.
False-negative damage indications (no indication of damage
when damage is present).

3. SUPERVISED AND UNSUPERVISED LEARNING

In this section two approaches of statistical pattern recognition
are discussed, supervised and unsupervised learning.  The
particular application of statistical pattern recognition we have
in mind is the detection of damage in a large structural
system; for example, a bridge or an aerospace structure.
Some of the material in this section and the next section
parallels that presented in [10] and [11].  The reader is referred
to these two books for a more thorough discussion.

The aim of supervised learning is to classify an object to one
of k  predefined and mutually exclusive categories based on
some rule or rules. Unsupervised learning is often referred to
as cluster analysis or unsupervised clustering.  The goal of
unsupervised classification is to define classes based on a
collection of objects.

To illustrate supervised classification, suppose that every
object can be described in terms of a feature vector, which is
often numerical.  When taken together the collection of feature
vectors spans a multivariate space, called the feature space.
Each object has a true class, and the objective is to construct
a rule that assigns the objects to their true class.  Typically,
the true class for all objects is unknown but the true class for a
sample of objects is known.  This sample is referred to as a
training set or a learning set.  The training set is used to
construct a classification rule that is then used to predict the
class of new objects, based only on their feature vectors.  In
contrast, for unsupervised learning the true class of the
training set objects is unknown and the problem is to define
the true classes.

If the training set is a random sample from some population,
then regions of the feature space that are densely populated
by feature vectors from class k  and sparsely populated by
feature vectors from other classes, should lead to new
observations in that region being assigned to class k .  This
result suggests that a new feature vector, x, be assigned to
class k  if the probability of class k  given x is greater than the
probability of any other class given x.  This conditional

probability is written )|( xkf  with estimated value )|(ˆ xkf .
Note that f may also represent a conditional density function.

For supervised classification to work well, the distribution of
feature vectors seen in the future must be the same as the
distribution of feature vectors in the training set.  If the
population that the future objects are drawn from drifts away
from the population that the training set was drawn from,
supervised classification cannot be expected to work well.  In
that case, we would be trying to classify new objects to
classes that are no longer appropriate.

Applying supervised classification techniques to damage
detection in large structural systems requires the construction
of a feature vector whose distribution changes when the
structure is damaged.  Also, training data is needed from the
possible damage classes.  It should not be difficult to obtain
training data from a structure that is in good condition, but
getting examples of data from the same structure when it is
damaged may be difficult.



One way to proceed is to estimate the density of feature
vectors taken when the structure is in good condition and then
quantify how consistent future data is with this estimated
density.  This unsupervised learning approach and how it
might be implemented is discussed in more detail in the
following sections.

4. DENSITY ESTIMATION APPLIED TO DAMAGE
DETECTION

In this section parametric and nonparametric density
estimation are discussed. In parametric estimation the
observed data are assumed to come from some family of
distributions, indexed by the unknown parameters.  The
observed data are used to estimate the unknown parameters
and hence the density.  Nonparametric density estimation, by
contrast, does not force the data into any particular family of
distributions but, instead, allows the data to “choose” the
particular density estimate.  Several nonparametric density
estimation methods are discussed.

4.1 PARAMETRIC DENSITY ESTIMATION

Parametric density estimation is concerned with estimating
the unknown parameters of an assumed density function.
Two commonly used methods of parameter estimation are
least squares and maximum likelihood.

Probably the most familiar example of parametric density is
estimating the mean and variance of a normal distribution.
Based on a random sample of observations, the mean and
variance of the density are estimated by the sample mean and
the sample variance of the observed data, respectively.

Estimating a multivariate density is in principle no more difficult
than a univariate density; however, there will be more
parameters to estimate and therefore generally more data is
needed.  Estimating a multivariate normal density is common
and in this case there is a mean vector and a covariance
matrix to estimate, instead of a mean and a variance, as in the
univariate example.

4.2 NONPARAMETRIC DENSITY ESTIMATION

In this section some of nonparametric density estimators are
reviewed.  In particular, a naïve method, a kernel method, and
a nearest neighbor method are considered.  Throughout this
section assume the data, nXX ,,1 K , are independent and
identically distributed observations taken from a continuous
distribution with probability density function f.  The X’s are the
feature vectors and are initially considered to be univariate.

4.2.1 NAÏVE ESTIMATOR

Nonparametric density estimation can be motivated by
observing that, if X is a random variable with density function

)(xf , then

)Pr()21()( hxXhxhxf +<<−≈ .  (1)

For a given value of h, the probability of being in the interval
),( hxhx +−  can be estimated as the proportion of observed

data in the interval.  The naïve estimate of the density f is
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By defining a weight function w as w(x) = 1/2 if  1<x  and 0

otherwise, the naïve estimator can be written
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This estimator can be constructed by placing a “box” of width
2h and height 1)2( −hn  over each data point and then adding
the heights of all the boxes.

4.2.2 KERNEL ESTIMATOR

A generalization of the naïve estimator is to replace the weight
function w by a kernel function K where
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Often, K will be a symmetric density function, for example the
normal density function.  The kernel estimator with kernel K is
defined by
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The parameter h is the window width, also called the
smoothing parameter or the bandwidth.  Just as the naïve
estimator can be thought of as a sum of boxes placed over the
observations, the kernel estimator can be thought of as a sum
of  “hills” placed over the observations.

Two questions naturally come to mind: How do we choose a
kernel and how do we choose the bandwidth?  Generally,
researchers have attempted to answer these questions by
considering a global measure of fit, the mean integrated

square error (MISE), for an estimator f̂  of f.  The MISE is
defined by

     ( )∫ −= dxxfxfEfMISE
2

)()(ˆ)ˆ( (6)

The expectation is with respect to the sampling distribution of

.f̂  Whether or not the MISE is an appropriate measure of
global fit depends on the particular problem at hand.  A general
recommendation concerning the choice of kernels is for
cautious users to choose a symmetric non-negative unimodal

kernel.  In addition, the only kernels that guarantee f̂  is



everywhere non-negative are kernels that are probability
density functions.

The choice of the smoothing parameter is important.  If h is too
small the data will be “under-smoothed” and random features
of the data tend to be emphasized.  If h is too large the data
will be “over-smoothed” and systematic features will be lost.
In particular, if the underlying density is bimodal and h is

chosen too large, the bimodal feature will not be seen in f̂ .

Results have been derived for choosing an optimal bandwidth.
Unfortunately, under general conditions the optimal bandwidth
depends on the unknown density f.  As might be expected, the
more rapidly the density fluctuates, the smaller the value of h
that is needed.  Good results can often be obtained by using a
Gaussian kernel and 519.0 −= nAh  where

    A = min (standard deviation, interquartile range/1.34) (7)

The standard deviation and the interquartile range are
computed from the observations.  At the least, this choice of h
should provide a good starting point.  A better choice of h
might be found by making use of cross-validation techniques.

One modification of the kernel method, referred to as an
adaptive kernel estimator and particularly useful in multivariate
estimation, is to allow a different bandwidth for each
observation.  By allowing a different bandwidth the tails of the
density can possibly be better fit.  Essentially, adaptive kernels
attempt to smooth the tail observations more than
observations in the center of the density.  Smoothing tail
observations prevents the estimated density from showing
spurious “bumps” in the tail.

4.2.3 NEAREST NEIGHBOR ESTIMATOR

The nearest neighbor method is based on the fact than in a
sample of size n, the expected number of observations in the
interval ],[ hxhx +− is about )()2( xfhn , for each h > 0.
Now, for every x define

           )()()( 21 xdxdxd n≤≤≤ L  (8)

to be the distances, arranged in ascending order, from x to the
points of the sample.  Exactly k  observations will fall in the
interval )](),([ xdxxdx kk +− , so ).(2 xfdnk k≈  this
suggests defining the k th nearest neighbor density estimate to
be
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The k th nearest neighbor method allows the size of the box
over the observations to change so that each box contains the
same number of observations, in this case k .  In the tails of the
distribution the distance )( xd k  will be larger than in the main
part of the distribution, and so the problem of under-smoothing
the tails should be reduced.

The nearest neighbor estimate is not a density function and
the tails of the estimated function tend to die away very slowly.
If interest lies in exploring tail behavior, as will be the case in
many damage detection applications, then nearest neighbor
methods should probably not be used.

Note that one choice of bandwidth for a kernel estimate is to
use ).(xdh k=  This choice of h allows for a smoother
estimate in the tails.

4.2.4 MULTIVARIATE DENSITY ESTIMATION

All of the methods discussed so far can be used with
multivariate data. For example, instead of a univariate kernel a
multivariate kernel is used.  Also, for practical reasons,
multivariate kernels are usually restricted to ellipsoidal
probability density functions.  A common choice is a
multivariate Gaussian kernel.  Now, instead of a single
smoothing parameter h, we will have a smoothing parameter
matrix H.

Another choice for a multivariate kernel is the product of d
univariate kernels where d is the dimension of the feature
vectors.   Each univariate kernel can be different and each one
can depend on a different smoothing parameter jh .  Typically

each kernel is restricted to have the same shape.

In principle, there is no difficulty extending the ideas of
univariate density estimation to higher dimensions.  However,
the nature of high dimensional spaces presents some peculiar
problems.  In one dimension, nearly 90% of the “mass” of a
standard normal density is within 1.6 standard deviations of 0.
With a ten-dimensional standard multivariate normal density,
nearly 99% of the “mass” will be at a distance greater than 1.6
standard deviations from the origin and, unfortunately, this
area of space is sparsely populated.

As might be expected, trying to get a good estimate in the tails
of a multivariate density is going to be difficult.  Silverman [8]
makes the strong statement that it is futile to expect very good
estimates in the tails if the dimension of the data is greater
than 3 or 4 unless enormous amount of independent data are
available.

As an illustration of the problems encountered in high
dimension, consider a simple histogram in 10 dimensions, i.e.
there are 10 variables.  If the range of each variable is divided
up into 10 bins then the 10 dimensional histogram will have

1010  cells.   Few samples will be large enough to get accurate
estimates within each cell and in fact most cells will have no
observations.

5. DENSITY ESTIMATION APPLIED TO DAMAGE
DETECTION

Assume a sensor that measures acceleration has been
placed on a structure and that the structure is in good
condition.  Denote the damage-sensitive feature derived from
the acceleration measurements taken at time t by x(t).  These
features are used to construct a univariate density estimate.



Once the density function has been estimated, the next step is
to determine if future data features come from this density.
Because the density estimate was constructed using data
obtained when the structure was in good condition, if the future
data isn’t consistent with the density estimate, this is evidence
that the structure may be damaged.  The important issue now
is how to determine if future data is consistent with the
estimated density.

A natural way to proceed is to consider the new feature to be
consistent with the density if the feature is not too far from the
center of the density.  For example, if a new feature is below
the 1st percentile or above the 99th percentile of the density,
this result would be very unusual if in fact the new feature is
generated by the same process that generated the data when
the structure was in good condition.

If instead of a single sensor there were multiple sensors on the
structure, the observations, x(1), … , x(n), would be
multivariate and the density estimate would be multivariate.

For a multivariate density contours of constant density can be
constructed.  A new data feature might be considered unusual
if it is beyond, say, the 99th percent contour, i.e. the contour
such that 99 percent of the mass of the density is inside the
contour.

Even if the new feature is beyond the 99th percent contour, it
may be the result of changing operational or environmental
conditions as opposed to damage.  Therefore, it is necessary
that the feature vector contain parameters that quantify
variability in the operational and environmental conditions as
well as parameters that quantify change in the structural
condition.  The tradeoff will be that quantifying the operation
and environmental conditions necessitates increasing the
dimension of the feature vector with the associated
dimensionality problems previously discussed.

6. STATISTICAL PROCESS CONTROL

In this section statistical process control (SPC) [12] and how it
can be applied to vibration-based damage detection is
discussed.   Again, suppose at some location on a structure
there is one sensor for recording acceleration and denote the
features derived from the measurement at time t by x(t).  After
determining that the structure is in good condition there will be
an almost continuous stream of acceleration measurements.
Based on these observed features, one would like to know if
the structure is in good condition, or if it has been damaged.

Features derived from measurements taken when the
structure is in good condition will have some distribution with
mean µ  and variance 2σ .  If the structure is damaged, there
might be a change in the mean, the variance, or both.

Statistical process control provides a framework for monitoring
future features and for identifying new data that is inconsistent
with past data.  In particular, quality control charts are
proposed to monitor the mean, the variance, or some other
function of the features derived from the acceleration
measurements.

If the mean µ  and standard deviation σ  are known, a control
chart is constructed by drawing a horizontal line at µ  and two
more horizontal lines representing the upper and lower control
limits.  The upper limit is at σµ k+  and the lower limit is at

σµ k− .  The number k  is chosen so that when the structure
is in good condition a large percentage of the observations will
fall between the control limits. Often k  is chosen so that at
least 99% of the observations are between the limits.

As each new measurement is taken, the new feature is plotted
versus time.  If the condition of the structure has not changed,
almost all of these features should fall between the upper and
lower control limits, the exact percentage being determined by
the choice of k .  In addition, there should be no obvious pattern
in the charted data; e.g., there should not be a repeated
pattern of 5 observations above the mean followed by 5
observations below the mean.  If the structure is damaged
there might be a shift in the feature mean, which would be
indicated by an unusual number of charted values beyond the
control limits.  Plotting the individual measurements on a
control chart is referred to as an X–chart, or a Shewhart chart.

To detect changes in the mean of the features, an intuitively
appealing idea is to form rational subgroups of size n,
compute the sample mean within each subgroup and chart the
sample means.  The centerline of the control chart would still
be µ  but the standard deviation of the charted values would

be nσ  so the control limits would be placed at

nk σµ ± .  This type of control chart is referred to as an X-
bar chart.

The subgroup size n is chosen so that observations within
each group are, in some sense, more similar than
observations between groups.  If n is chosen too large a drift
that may be present in the mean can possibly be obscured, or
averaged-out.   An additional motivation for charting sample
means, as opposed to individual observations, is that the
distribution of the sample means can be approximated by a
normal distribution.

When the mean and variance are unknown they must be
estimated from observed data, taken when the structure is in
good condition. The mean could be estimated with the sample
mean of the feature.   Several different methods have been
proposed for estimating σ .  For example, the sample
standard deviation or some function of the range of the data
could be used.  Alternatively, if rational subgroups are
constructed, the sample standard deviation or a function of the
range within each subgroup could be computed and then the
estimates pooled across the groups.  Montgomery [12] has a
more complete discussion of estimating a standard deviation
for use in control charts.

This discussion of control charts has assumed that the
features are uncorrelated.  In practice the observed data likely
to be autocorrelated.  When there is autocorrelation in the
data, the control limits as just described are inappropriate
because the estimate of σ is inappropriate.  One way of
removing autocorrelation is to fit an autoregressive model to
the data.  If the model is approximately correct, the residuals
from the fitted model should be nearly uncorrelated.  A control



chart can then be constructed, exactly as previously
described, using the residuals as the data feature.

7. EXAMPLES

In this section we illustrate kernel density estimation and an X-
bar chart.  For a more complete discussion of the data used in
section and the experiment that generated the data, see [13].

Acceleration measurements were taken on an undamaged in-
situ bridge column at 40 sensor locations. The column was
then damaged and acceleration measurements taken at each
sensor location. In all there were 5 damage levels and one
undamaged level that is designated damage level 0.  Only the
measurements from sensor location 1 are considered in this
section.

At each damage level there is a time-history of 8192
acceleration measurements.  An autoregressive model was
fitted to the damage level 0 data and the residuals computed;
for the density estimates an order 3 model was fit and for the
control chart an order 5 model was fit. The autoregressive
model estimated from the damage level 0 data was then fitted
to the data from damage levels 1 through 5 and the residuals
computed.  The residuals from damage levels 0 through 5 are
the data for the examples in this section.

Figure 1 shows a kernel density estimate for each damage
level.  The normal density was chosen as the kernel function

with smoothing parameter of approximately 510x6 − .  The
estimated density functions for damage levels 1 through 5 are
all clearly different from damage level 0.  The most notable
feature of the estimated densities is the increase in variability.

Figure 2 shows estimated densities obtained by splitting the
damage level 0 in half.  The kernel function was a normal

density with smoothing parameter 410x 0.1 − .

Figure 1: Kernel density estimation of residual errors

Figure 2: Comparison of density functions of the residuals
computed from two segments of the undamaged
time history

To construct the control charts in Figure 3, rational subgroups
of size 4 were created by placing the first 4 residuals in group
1, the next 4 in group 2 and so forth; this gives 2046
subgroups.  The sample mean was computed for each group
and then charted.  The upper and lower control limits were set
so that approximately 99% of the charted values should fall
between the limits, when there is no damage.

Figure 3a shows the charted values computed from damage
level 0 data and Figure 3b shows the charted values computed
from damage level 1 data.  In Figure 3a there are 13 values
outside the limits.  If there was no damage, then Figure 3b
should show about as many values beyond the control limits
as Figure 3a.  However, in Figure 3b there are 399 charted
values beyond the control limits.

Fig. 3 Control charts for undamaged column (top) and column
after the first level of damage (bottom).

8. SUMMARY

This paper has described the general process of structural
health monitoring as in terms of a problem in statistical pattern



recognition.  Because most structural health monitoring
applications to large structural systems do not allow the
opportunity to obtain data from the damaged system,
statistical pattern recognition will have to be applied in an
unsupervised learning mode.  This paper has attempted to
summarize various statistical procedures that can be
employed for such unsupervised learning problems.

The two general unsupervised-learning statistical procedures
described in this paper, (1) density estimation & significance
testing, and (2) statistical process control, are aimed at
identifying statistically significant outliers in a distribution of the
damage sensitive features or change in the distribution itself.

Two key issues arise when attempting to apply the statistical
procedures described in this paper to structural health
monitoring.  First, one must examine features that quantify
environmental and operational variability as well as the
structural condition.  Without such measures, one will have
difficulty distinguishing changes in vibration response caused
by damage from changes caused by other sources of
variability.  Second, the addition of these environmental and
operational features must be done with the concept of feature
vector dimensionality in mind.  Particular attention must be
paid to the difficulties that large dimensional feature vectors
pose for statistical quantification.

Finally, no matter which features are used and which
statistical pattern recognition method is employed, there is
always the need to perform false-positive studies as shown in
the example presented herein.
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